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1. Introduction

Supersymmetric solutions in supergravity theories have been quite fundamental in under-

standing various aspects of string/M theory. However, such solutions were not studied much

for supergravities coupled to non-linear sigma models due to their complexity. Because of

its relative simplicity, D = 3 supergravities provide a good framework for understanding

such systems. This has the further advantage from the AdS/CFT perspective [1 – 3] since

the dual theory would be a two dimensional CFT .

With these motivations in mind, we find new supersymmetric solutions in the mat-

ter coupled D = 3, N = 2, U(1) gauged supergravities and study some of their properties.

This model was constructed in [4] and admits both compact and non-compact sigma model

manifolds. There is also a well-defined flat sigma model limit. The theory contains only

a Chern-Simons gauge field and no Maxwell term. The first supersymmetric solutions of

this model were constructed in [4] and these described static, uncharged strings. Later

the charged, stationary generalizations of these strings superposed with gravitational and

Chern-Simons electromagnetic waves were obtained in [5]. Another class of solutions rep-

resenting vortices were found in [6], where the model we consider was modified with a

Fayet-Iliopoulos term. This changes the potential so that only topological solitons, by

which we mean smooth solutions that interpolate between AdS and Minkowski vacua, are

allowed.
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The supersymmetric vortices [6] and strings [5] were obtained by using structure-wise

similar supersymmetry breaking conditions. In this paper, we consider a more general

supersymmetry breaking condition which contains these previous cases and succeed in

obtaining the Killing spinor explicitly. In addition to the already known solutions, this also

leads us to new ones. Among these, we have an explicit non-topological soliton solution (a

smooth solution that approaches to AdS vacuum when |φ| = 0) for the non-compact sigma

model, a locally flat solution for the compact sigma model and a string-like solution for

both types of sigma models. The last one is smooth for the compact scalar manifold.

The plan of this paper is as follows. In section 2 we begin with a review of the N = 2

gauged supergravity model that we consider. In section 3 we give a detailed analysis of the

equations that arise from the supersymmetry breaking condition. Section 4 is devoted to

the construction of the new supersymmetric solutions mentioned above. Solutions in the

flat sigma model are studied in section 5. We conclude in section 6 with some comments and

future directions. The supersymmetry breaking condition is worked out in the appendix.

2. The model

In this paper we consider N = 2, U(1) gauged supergravity in D = 3 interacting with an

arbitrary number of matter multiplets which was constructed in [4]. Its higher dimensional

origin is yet to be discovered. The boundary symmetries of this theory were studied in [7]

and its extension by including a Fayet-Iliopoulos term was given in [6]. Holographic RG

flows in this model were analyzed in [8]. Let us also mention that the model we consider in

this paper [4] is a member of a class of theories called abelian Chern-Simons Higgs models

coupled to gravity (see [6, 9] and references therein). The field content of the theory is:

• The supergravity multiplet: {eµ
a, ψ̃µ, Aµ}

• The scalar multiplet (K copies): {φα, λ̃r}
All fields except the graviton eµ

a and the gauge field Aµ are complex. Here, for the sigma

model manifolds we consider K = 1 with the following cases, M+ = S2 = SU(2)/U(1) and

M− = H2 = SU(1, 1)/U(1). We define the parameter ε = ±1 to indicate the manifolds

M±. The bosonic part of the Lagrangian is 1

L =
√−g

(

1

4
R − 1

16ma4

εµνρ

√−g
Aµ∂νAρ −

|Dµφ|2
a2(1 + ε|φ|2)2 − V (φ)

)

, (2.1)

where Dµφ = (∂µ − iεAµ)φ and the potential is given by

V (φ) = 4m2a2C2

(

|S|2 − 1

2a2
C2

)

. (2.2)

Functions C and S are defined as

C =
1 − ε|φ|2
1 + ε|φ|2 , S =

2φ

1 + ε|φ|2 . (2.3)

1Our conventions are as follows: We take ηab = (−, +, +) and εµνρ =
√−gγµνρ. In a coordinate basis a

convenient representation for γa matrices is γ0 = iσ3, γ1 = σ1, γ2 = σ2 with ε012 = 1. Here 0,1,2 refer to

the tangent time, radial and theta directions, respectively, and γ2 is the charge conjugation matrix.

– 2 –



J
H
E
P
0
8
(
2
0
0
6
)
0
7
8

a2 < 1/2,
2a

ε=−1

a2<11/2 <

2a >1,

a

V

= 1/2

2= 1

0
φ

-2m2

V

0 1

-2m2

φ

ε=1

-1

Figure 1: The scalar potential V plotted with respect to φ. For ε = −1, V (|φ| = 1) → ∞.

Note that the following algebraic and differential relations hold:

|φ|2 =
ε(1 − C)

(1 + C)
, ε|S|2 = 1 − C2 ,

dC

d|φ| = −ε|S|2
|φ| ,

d|S|
d|φ| =

C|S|
|φ| . (2.4)

The constant “a” is the characteristic curvature of M± (e.g. 2a is the inverse radius in

the case of M+ = S2). The gravitational coupling constant κ has been set equal to

one and −2m2 is the AdS3 cosmological constant. Unlike in a typical AdS supergravity

coupled to matter, the constants κ, a,m are not related to each other for non-compact

scalar manifolds, while a2 is quantized in terms of κ in the compact case so that κ2/a2 is

an integer [4]. When ε = −1 for all a2 there is a supersymmetric AdS vacuum at φ = 0

and a non-supersymmetric but stable (it satisfies Breitenlohner-Freedman bound [10]) AdS

vacuum for 1/2 < a2 < 1. When ε = 1 there are supersymmetric AdS, Minkowski and non-

supersymmetric de Sitter vacua (see figure 1). The forms of the potentials are appropriate

for the possibility of existence of topological (ε = 1) and non-topological (ε = −1) solitons.

The nonlinear scalar covariant derivative Pµ and the U(1) connection Qµ are defined as

Pµ =
2∂µφ

1 + ε|φ|2 − iεAµS , Qµ =
iφ

↔
∂µ φ∗

1 + ε|φ|2 + AµC . (2.5)

The bosonic field equations that follow from the Lagrangian (2.1) are

Rµν =
1

a2
P(µP ∗

ν) + 4V gµν , (2.6)

εµνρFνρ = −4εima2√−g [PµS∗ − (Pµ)∗S] , (2.7)

1√−g
∂µ

(√−ggµνPν

)

= iεQµPµ + 2a2
(

1 + ε|φ|2
) ∂V

∂φ∗ . (2.8)

The supersymmetric version of the Lagrangian (2.1) is invariant under the following

fermionic supersymmetry transformations

δψ̃µ =

(

∂µ +
1

4
ωµ

abγab −
i

2a2
Qµ

)

ε + mγµC2ε , (2.9)
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δλ̃ =

(

− 1

2a
γµPµ − 2εmaCS

)

ε . (2.10)

In order to obtain a supersymmetric solution, one needs to solve (2.9) and (2.10) when all

fermions are set to zero. It should be noted that the solutions can be naturally divided

into two classes: a2 6= 0 and a2 = 0. (To take the a2 = 0 limit, certain field rescalings

should be performed as explained in section 5.) With these preliminaries at hand, we now

look for supersymmetric solutions of this model in the next section.

3. Supersymmetry analysis (a2 6= 0)

Our metric ansatz is

ds2 = −F 2dt2 + H2(Gdt + dθ)2 + dr2, (3.1)

where F,G and H are functions of r only. We choose the scalar field to be of the form

φ = R(r)einθeiλt , (3.2)

where n and λ are real constants. For the vector field we pick the following gauge

Aµ = (At, Ar, Aθ) = (ψ(r), 0, χ(r)) . (3.3)

For a supersymmetric solution, we look for Killing spinors that satisfy δψ̃µ = 0 and

δλ̃ = 0. For this purpose, we assume a projection of the form (1 − γaba)ε = 0, where

ba’s are some complex functions that satisfy baba = 1. Since the analysis involves a long

calculation, for purposes of readability, we will save those technical details to the appendix

and now carry on with the final outcomes of that investigation. After a careful study, one

ends up with the following set of equations:

(FHZ)′ = 4mC2FH , (3.4)

G = g0 +
FZ

H
, (3.5)

λ − εψ =
1

C
(λ − 2εa2c2) + qkεa2 H ′

CF
g0 + 4qkεma2C , (3.6)

n − εχ =
1

C
(n − 2εa2c1) + qkεa2 H ′

CF
, (3.7)

R′

R
= qk

(n − εχ)

FH
+ 4εma2CZ , (3.8)

λ − εψ = g0(n − εχ) + 4qkεma2C . (3.9)

Here λ, k, n, g0, c1, c2 are arbitrary real constants and q2 = 1. Throughout, we use prime

to indicate differentiation with respect to r. Note that (3.9) relates the constants as λ −
2εa2c2 = g0(n − 2εa2c1). Here we would like to emphasize that for electromagnetic “self-

dual” solutions where E = −g0B, we need g0 6= 0 and k = 0 as have already been found

in [5]. The function Z is defined as:

Z ≡ p

F

√

F 2 − k2 , p2 = 1 . (3.10)
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Now one has to check the field equations. It turns out that the scalar field equation (2.8)

is identically satisfied as a result of the above set of equations. However, the vector field

equation (2.7) yields one new equation

a2

(

H ′

F

)′
+

|S|2(n − εχ)2

FH
+ 16m2a4C2|S|2 H

F
= 0 . (3.11)

On the other hand, after some rather lengthy but straightforward calculations, it can be

shown that the Einstein field equations (2.6) follow from (3.4), (3.5) and (3.11).

In summary, for a 1/2 supersymmetric solution we need to solve equations (3.8), (3.4)

and (3.11) and determine the radial dependences of H, F and R. (Note that (n−εχ) can be

replaced in these equations using (3.7).) Once this is done, the vector field components are

determined. After some algebra, it can be shown that these three equations are equivalent

to the following set:

|S|′
|S| =

εC
√

16m2a4C2(FH)2 + W

FH
, (3.12)

|S|′
|S| =

εa2(FH)′

FH
+

(n − 2εa2c1)qk

FH
, (3.13)

W ′ = 32εm2a2(n − 2εa2c1)qkC2FH , (3.14)

where we defined

W ≡ k2(n − εχ)2 + 8εma2qkCFHZ(n − εχ) − 16m2a4k2C2H2 . (3.15)

When k = 0, instead of equations (3.14) and (3.15), we have (3.11). Comparing (3.14)

and (3.4), we see that

W = 8εma2(n − 2εa2c1)qkFHZ + w0 , (3.16)

where w0 is a constant that vanishes when k = 0. Equations (3.15) and (3.16) together give

an implicit relationship between the unknown functions χ,R,F and H. It is interesting to

observe that the function W can be related to a topological invariant as follows:

FµνFµν = −32m2a4|S|4W
F 2H2

. (3.17)

Note that there is a crucial difference between the k = 0 and k 6= 0 cases in terms of the

above invariant; for k = 0, it vanishes automatically.

With these, our metric becomes:

ds2 = −k2dt2 + 2pFHZdvdt + H2dv2 + dr2 , v ≡ θ + g0t . (3.18)

The curvature scalar of this metric is:

gµνRµν = −2

(

(FH)′′

FH
− 4m2C4

)

. (3.19)
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The set of equations (3.12), (3.13), (3.14) is quite difficult to analyze in its most general

form. This system was also obtained in [6] with g0 = λ = c2 = 0 and k = 1, however with

the potential modified with the Fayet-Iliopoulos term. Note that the system simplifies

when k = 0. In this case we have Z2 = 1 and W = 0, and the equations are completely

integrable. This solution was obtained in [5] and it corresponds to a charged, stationary

string with gravitational and Chern-Simons waves attached to it [5]. Therefore, we will

assume k 6= 0 in this paper. There is another option which simplifies this system, namely

(n−2εa2c1) = 0 case. Finally, when R is a constant, that is, the scalar field is just a phase,

again the system is completely solvable. Now we analyze these, as well as the general case

in detail.

4. Supersymmetric solutions (a2 6= 0)

In this section we will try to solve the set of equations (3.12)-(3.14). We start with some

easier subcases and consider the most general case later.

4.1 (n − 2εa2c1) = 0 Case

In this case, we see from (3.16) that

W = w0 , (4.1)

where w0 is an arbitrary real constant. Then we find from (3.13) that

FH = f0|S|ε/a2

, (4.2)

which makes (3.12) a separable first order differential equation. Now we proceed with an

investigation of the w0 = 0 and w0 6= 0 cases separately.

4.1.1 w0 = 0

When w0 = 0, (3.12) is easily integrated [5], but its explicit form will not be necessary for

the discussion below. From (3.4), one finds

Z = 1 − u0

FH
, (4.3)

where u0 is a real constant. Using (4.3) and (4.2), one obtains

H2 =
f2
0

k2
(2u0f0|S|ε/a2 − u2

0) . (4.4)

For the vector field (3.7), one gets

n − εχ =
4εma2u0f0

qk
C , (4.5)

which is smooth for ε = 1. The metric (3.18) now becomes

ds2 = −k2du2 + 2f0|S|ε/a2

dudv + dr2 , u ≡ pt +
u0f0

k2
v , (4.6)

– 6 –
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which reduces to the string solutions (with no waves attached) that were found in [5]

when k = 0. The scalar field in [5] and the solution presented here is the same; however,

(n − εχ) in that case was proportional to 1/C from (3.7). This change makes the vector

field smooth for ε = 1. Unfortunately, we couldn’t identify what this solution represents.

However, because of the fact that this and the string solution presented in [5] both have the

same curvature invariants and the same scalar field, we call this as a ‘string-like’ solution.

Note that, for both solutions the F 2 invariant vanishes (3.17). The main difference of this

new one is the absence of the SO(1, 1) worldsheet symmetry of the string solution [5].

There is a curvature singularity (3.19) as C2 → ∞ which can be seen from the curvature

invariants

gµνRµν = −8m2C2(3C2 − 8a2|S|2) ,

RµνRµν = 64m4C4(3C4 − 16a2C2|S|2 + 24a4|S|4) . (4.7)

When ε = −1, by performing a coordinate transformation ρ = 1/|S|2 (0 ≤ ρ < ∞),

the metric (4.6) becomes

ds2 = −k2du2 + 2f0ρ
1/(2a2)dudv +

dρ2

64m2a4(ρ + 1)2
, ε = −1 . (4.8)

By inspection, it is seen that there is no horizon and we have a naked singularity at ρ = 0

(or C2 → ∞). As ρ → ∞ (or C2 → 1) the solution becomes locally AdS3 whose metric

corresponds to a generalized Kaigorodov metric [11].

Let us now consider the ε = 1 case in more detail. We first define a new radial

coordinate ρ = M/C2 (M ≤ ρ < ∞), where M is a positive constant. Then (4.6) becomes

ds2 = −k2du2 + 2f0

(

1 − M

ρ

)1/(2a2)

dudv +
dρ2

64m2a4(ρ − M)2
, ε = 1 . (4.9)

We see that there is a horizon as ρ → M ; from the curvature invariants (4.7) the local

geometry is observed to be locally AdS3, which has a Kaigorodov [11] type of structure. As

ρ → ∞, the solution is asymptotically flat. Since |φ|2 = (
√

ρ−
√

M)/(
√

ρ+
√

M), the scalar

field and the vector field (4.5) are smooth everywhere. Both fields have asymptotic values

that are expected from a topological soliton, however the presence of a horizon prevents us

from labeling this solution as such.

Now let us look at the behavior of the geodesics. The geodesic equation associated

with the metric (4.9) is:

1

64m2a4

(

ρ̇

ρ

)2

= α

(

1 − M

ρ

)2

− EP

2f0

(

1 − M

ρ

)2− 1

2a2

− P 2k2

4f2
0

(

1 − M

ρ

)2− 1

a2

, (4.10)

where the dot denotes derivative with respect to an affine parameter and α = 0 or α = −1

for null or timelike geodesics, respectively. In this equation E and P are the conserved

quantities associated with the flow of the tangent vector of a geodesic corresponding to the

t and v variables. It is easy to see that timelike geodesics can not reach the horizon since

there is always a turning point. For null geodesics, if one demands the geodesics to reach the

– 7 –
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ρ → ∞ limit, one requires −k2P 2 − 2EPf0 > 0. One can show that in this case there is no

turning point and such geodesics reach the horizon. However, for 1/a2 = 1, 3 (mod 4), these

geodesics can not extend beyond the horizon since (4.10) becomes imaginary. Moreover,

for 1/a2 = 2 (mod 4), it is easy to see that the geodesics do not cross the horizon since the

right hand side of (4.10) becomes negative then. Therefore, the solution is well-defined for

all values of 1/a2 except when 1/a2 = 0 (mod4).

4.1.2 w0 6= 0 and ε = −1

For general a2, when w0 6= 0, the integration of (3.12) is quite complicated. Therefore we

will mainly concentrate on the a2 = 1 case. In this case, we first introduce a new constant

|b| ≤ 1 such that w0 = −16m2b2, to simplify the discussion. Now (3.12) implies that

R′

R
= 4m

√

C2 − b2|S|2 .

From this it follows that

dr =
dC

4m|S|2
√

C2 − b2|S|2
.

Furthermore, introducing U ≡ FHZ and taking U = U(C), one finds from (3.4) that

dU

dC
= f0

C2

(C2 − 1)3/2
√

C2 − b2(C2 − 1)
,

which can be integrated using an elliptic function E 2 as

U(C) = bf0

−C
√

1 + (−1 + 1
b2

)C2 +
√

1 − C2E(arcsin C|1 − 1
b2

)
√

C2 − 1
.

At first sight, this seems to be complex valued, however it can be verified that U(C) is

always real for C > 1 (which is automatically satisfied for ε = −1) and |b| < 1. With these,

the metric can be cast in the form

ds2 = −(pkdt − U(C)dv)2 + f2
0

dv2

|S|2 +
dC2

16m2|S|4(C2 − b2|S|2) .

Note that C2 − b2|S|2 = 0 when C2 = b2/(b2 − 1) < 1, which is not allowed and therefore

there is no horizon! The curvature invariants for this metric are

gµνRµν = −8m2(8C2 − 5C4 + 4b2|S|4) ,

RµνRµν = 64m4[8b4|S|8 − 8b2C2|S|4(2|S|2 − 1) + C4(24 − 32C2 + 11C4)] ,

from which it follows that as C → 1(|S| → 0), the solution becomes locally AdS. The

only place where a curvature singularity may appear is at C → ∞ (and thus |S| → ∞).

However, this may not always be an allowed limit. To see this, let us consider the b = 1

2The elliptic function of the 2nd kind is defined as E(φ|m) =
R φ

0
(1 − m sin2 θ)1/2dθ, φ ∈ (−π/2, π/2).

– 8 –
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case which simplifies the calculations above. Then (3.12) becomes R′/R = −4m . Defining

a new radial coordinate ρ = 1/|S|2 , we obtain

FHZ = f0

√

ρ + 1 − f0

2
ln

(√
ρ + 1 + 1√
ρ + 1 − 1

)

. (4.11)

From (4.2), we have FH = f0
√

ρ which yields,

Z =

√

ρ + 1

ρ
− 1

2
√

ρ
ln

(√
ρ + 1 + 1√
ρ + 1 − 1

)

. (4.12)

Since we have |Z| ≤ 1 from (3.10), we see that this forbids ρ to reach 0.

In terms of the new radial coordinate, R = −√
ρ +

√
1 + ρ, which clearly shows that

the scalar field is always smooth and finite. From (3.8), we obtain

χ = −n +
4mf0

qk

[

1√
ρ
−

√

ρ + 1

ρ
ln

(√
ρ + 1 + 1√
ρ + 1 − 1

)]

, (4.13)

which is again smooth everywhere. This also implies the smoothness of ψ from (3.9). All

these matter fields have the expected behavior of a non-topological soliton as ρ → ∞.

4.1.3 w0 6= 0 and ε = 1

When a2 = 1, the discussion is analogous to the one for the ε = −1 case: We start by

introducing a new constant b > 0 such that w0 = 16m2b2. In this case (3.12) yields

R′

R
= 4m

√

C2 +
b2

|S|2 .

We record here in passing that now

dr =
dC

4m|S|2
√

C2 + b2

|S|2
.

Introducing U ≡ FHZ as before and taking U = U(C) again, one obtains from (3.4) that

dU

dC
= f0

C2

√

C2(1 − C2) + b2
,

whose integration yields the following complicated expression in terms of elliptic functions

E and F 3:

U(C) =
if0(ξ + 1)

√
ξ − 1

2
√

2(C2(1 − C2) + b2)

√

1 +
2C2

ξ − 1

√

1 − 2C2

ξ + 1
×

(

E

(

i arcsinh

[
√

2

ξ − 1
C

]
∣

∣

∣

∣

1 − ξ

1 + ξ

)

− F

(

i arcsinh

[
√

2

ξ − 1
C

]
∣

∣

∣

∣

1 − ξ

1 + ξ

))

,

3The elliptic function of the 1st kind is given by F (φ|m) =
R φ

0
(1 − m sin2 θ)−1/2dθ, φ ∈ (−π/2, π/2).
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where we have used ξ ≡
√

1 + 4b2 > 1 for convenience. This may again seem to be

complex valued, however it can be verified that U(C) is always real for 0 < C < 1 (which

is automatically satisfied for ε = 1). The metric now reads

ds2 = −(pkdt − U(C)dv)2 + f2
0 |S|2dv2 +

dC2

16m2|S|2(C2|S|2 + b2)
.

It is clear that there is no horizon. The curvature invariants for this metric are

gµνRµν = 8m2(4b2 − 11C4 + 8C2) ,

RµνRµν = 64m4(8b4 − 8b2C2(4C2 − 3) + C4(24 − 64C2 + 43C4)) ,

which are both regular for 0 < C < 1.

Looking at the curvature scalar above, one notices that this solution approaches neither

to AdS (C = 1 limit, where gµνRµν = −24m2) nor the Minkowski vacuum (C = 0 limit).

Indeed, if one plots (1 − Z2) = k2/F 2, one finds that this becomes negative before the

C = 1 point is reached. We thus conclude that this solution must be ruled out.

4.2 R′ = 0 Case

For the sake of completeness, we also consider this case. Looking at the supersymmetric

vacua in figure 1, we see that one should set R = 0 when ε = −1, and R = 0 or R = 1

when ε = 1. The scalar field is just a pure phase now. The functions C and |S| are just

constants and by defining

α ≡ −(n − 2εa2c1)qkε

a2
and x0 ≡ −4m

(

1 − εR2
0

1 + εR2
0

)2

,

where |φ| = R0, one finds from (3.13) and (3.4) that

FH = αr + β and FHZ ≡ U(r) = −x0(α
r2

2
+ βr + u0) ,

for some integration constants β and u0. The metric can now be cast in the form

ds2 = −(pkdt − U(r)dv)2 + (αr + β)2dv2 + dr2 , (4.14)

whose curvature invariants simply read

gµνRµν =
x2

0

2
and RµνRµν =

3

4
x2

0 ,

which indicate that the metric describes a local dS spacetime, when x0 6= 0. This enforces

us to set x0 = 0, i.e. R0 = 1, which is only allowed for ε = 1. This also sets Z = 0, since

now U(r) = 0. These imply from (3.7) that χ = εn. The metric (4.14) becomes (after

absorbing constants in the metric by redefining the t and the v coordinates)

ds2 = −dt2 + r2dv2 + dr2 , (4.15)

which is a locally flat spacetime with Euclidean Rindler spatial sections.
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4.3 General Case

To analyze the general case (i.e. (n − 2εa2c1) 6= 0 and k 6= 0), we first note that from

equations (3.4)-(3.9), one also finds

[

FH
R′

R

]′
= 16εm2a2CFH(C2 − a2|S|2) . (4.16)

Defining a new function Y through the relation

FH = f0|S|ε/a2

Y , (4.17)

one can also show that
Y ′

Y
= −qkε(n − 2εa2c1)

a2FH
. (4.18)

Using (4.18), we can write (4.16) as

1

Y

∂

∂Y

[

Y
∂ ln R

∂Y

]

= − ∂Veff

∂(ln R)
=

16εm2a6f2
0

(n − 2εa2c1)2k2
C|S|2ε/a2

(C2 − a2|S|2) , (4.19)

which decouples R from other unknown metric functions as was observed in [6]. A simple

integration yields the effective potential to be

Veff = − 8m2a8f2
0

(n − 2εa2c1)2k2(ε + a2)
C|S|2ε/a2

[εC2 + a2(C2 − ε|S|2)] . (4.20)

These can be interpreted as describing a classical mechanical system where a (fictitious)

point particle is subject to a motion due to an effective potential.

When ε = 1, it was shown in [6] that there is no vortex solution where the scalar field

approaches to a Minkowski vacuum as r → ∞ and to an AdS vacuum as r → 0. To see this

in our setup, we impose the following AdS behavior around r = 0: H ≈ r , F ≈ k. Then the

regularity of the scalar field implies that q = 1, c1 = 1/2, and we get χ = 0 and R = R0r
n,

where R0 is a constant. At the other end, as r → ∞ demanding R ≈ 1, H ≈ H∞r, FHZ =

const., the regularity of the vector field χ (3.7) imposes that H∞ = 1−n/a2. A well defined

conical geometry requires n/a2 < 1. However, this is not possible due to the fact that 1/a2

is an integer for ε = 1. (When n = 0, one is forced to set |φ| = 1 [12] which is analyzed in

section 4.2.)

For ε = −1, there may be a non-topological soliton, however (4.19) is hard to analyze.

In principle, one has to study (4.19) in the limits C → 1 and C → ∞ separately and match

the two solutions in a unique fashion. However, the limit C → 1 (i.e. R → 0) is quite difficult

to work with due to the divergent right hand side (the exponent of |S| is negative), however,

techniques developed in [12] might be applicable. If such a solution exists, then C → ∞
shouldn’t be accessible since this would make the vector field component ψ divergent (3.9).

5. Flat sigma model (a2
= 0)

To take the a2 = 0 limit in our model, first one has to rescale Aµ → a2Aµ and φ → aφ. Then

we have C → 1, S → 2aφ, and one obtains N = 2, AdS3 supergravity with cosmological
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constant −2m2 coupled to an R2 sigma manifold [4]. This coincides with the flat sigma

model limit of the N = 2 theory discussed in [13] as was shown in [7]. The Lagrangian (2.1)

now becomes

L =
√−g

(

1

4
R − 1

16m

εµνρ

√−g
Aµ∂νAρ − |∂µφ|2 + 2m2

)

, (5.1)

and its fermionic supersymmetry transformations are

δψ̃µ =

(

∂µ +
1

4
ωµ

abγab −
i

2
[iφ

↔
∂µ φ∗ + Aµ]

)

ε + mγµε , (5.2)

δλ̃ = −(γµ∂µφ)ε . (5.3)

To find a 1/2 supersymmetric solution, we again choose the same metric ansatz (3.1)

and use the same form of scalar and vector fields given in (3.2) and (3.3). Now using the

projection condition (A.3) in δλ̃ = 0 and δψ̃µ = 0, we find

R = R0 = const. , (5.4)

G =
λ

n
+

FZ

H
, (5.5)

χ = 2c1 − 2nR2
0 ±

kH ′

F
, (5.6)

ψ = 2c2 − 2λR2
0 ± 4km ± kH ′

F

λ

n
. (5.7)

The remaining unknown functions F and H are to be determined from

(FHZ)′ = 4mFH , (5.8)
(

H ′

F

)′
= −4R2

0n
2

FH
. (5.9)

Here the first equation (5.8) comes from the supersymmetry analysis and the second

one (5.9) follows from the field equations. When k = 0, we have Z2 = 1 (3.10) and (5.9) is

easily integrable then. This case was studied in [5]. The metric in this case takes the form

ds2 = −2pf0e
−4pmrdvdt + (h0e

−4pmr + h1 + h2r)dv2 + dr2 , (5.10)

where f0 is an integration constant. Here h0 and h1 = (pmc0 + 2R2
0n

2)/4m2 (or c0) are

arbitrary real constants and we have h2 = −2R2
0n

2p/m.

A study of the curvature invariants indicate that the solution has constant negative

curvature −24m2 and it is locally AdS3 [5]. When h1 = h2 = 0, the metric is the AdS3

metric in Poincaré coordinates. The h1 term can be obtained by using the Garfinkle-

Vachaspati method [14, 15] and it describes a wave in AdS3. Actually the metric with

h2 = 0 has already been discussed in [16] and it corresponds to a generalized Kaigorodov

metric [11]. Its equivalence to the extreme BTZ black hole [17] can be shown [16, 18]. To

see this, first scale the v and the t coordinates such that the constants f0 and h0 are set to

one, and next define H = ρ as the new radial coordinate in (5.10). Then we get

ds2 = −(4m2ρ2 − 2mh1)dt2 + h1dβdt + ρ2dβ2 +
4ρ2

(4mρ2 − h1)2
dρ2 , β ≡ v − pt , (5.11)
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where we have also performed the t → (
√

m/p)t, ρ → 2
√

mρ and β → [1/(2
√

m)]β scalings.

Now (5.11) is the extreme BTZ metric with total angular momentum J = h1 and the total

mass M = 2mJ = 2mh1.

When h2 6= 0, this spacetime is another pp-wave in AdS3. It is clear that it exists

only for a non-zero scalar field. In this case, if we perform the coordinate change H = ρ

in (5.10), then when the h2 term is negligible, the extreme BTZ metric (5.11) receives

corrections involving (ln ρ) terms which prevents the existence of a horizon. This signifies

that this solution might be interpreted as a self-gravitating soliton [13].

Another complete solution for (5.8) and (5.9) is found when

H ′

F
= h0 , (5.12)

where h0 is a constant. Defining a new radial coordinate H = ρ, one then finds supersym-

metric solutions that were already studied in [13]. In this case, the vector field components

turn out to be constants. Unfortunately, we couldn’t solve (5.8) and (5.9) in their full

generality.

6. Conclusions

We would now like to make some remarks about our results and suggest some future

directions. In this paper, we have found new supersymmetric solutions in addition to the

already known ones. For the non-compact sigma model, we gave an explicit solution which

we interpret as a non-topological soliton. To our knowledge, this is the first example of

such an exact solution for a nonlinear sigma model coupled to supergravity. In addition,

we also found a locally flat solution for the compact sigma model and a solution that we

termed ‘string-like’ for both types of sigma models. As we discussed above, these ‘string-

like’ solutions are obtained when w0 = 0 and they resemble the string solution (without

waves) given in [5]. The differences lie in an extra term in the metric which doesn’t affect

the curvature invariants and the form of the vector field. This suggests a relationship

between these two solutions which would be interesting to understand.

We observed that in the flat sigma model limit (a2 → 0) of our theory, the BTZ [17]

black hole solution arises [13]. However for a2 6= 0, we weren’t able to find a solution which

we could label as a black hole. This type of solution may not be allowed when the non-

linear sigma model scalars are active. It is desirable to see whether this is true, by finding

out all possible supersymmetric solutions as was done recently in some higher dimensional

models (for a review see [19].) One further generalization that is worth studying is to allow

the coupling of more than one matter multiplets to supergravity.

In all our solutions AdS space emerged when we took certain limits, which makes

these useful for studying the AdS/CFT duality. Half supersymmetric, smooth solutions

recently attracted much attention after the appearance of [20] where it was shown that

such solutions correspond to droplets in phase space occupied by the fermions on the CFT

side. Unfortunately, the CFT dual of the model that we studied is not known yet. Once

that is established, our explicit soliton solution might be important from this perspective.
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We hope that our results will be useful in studying supersymmetric solutions of more

complicated supergravity theories which are coupled to sigma model systems in higher

dimensions, as well as in D = 3 (for a review see [21]). It is especially attractive to study

the D = 3, N = 8 model [22], since its higher dimensional origin and its dual CFT are

well-known.

Another thing to consider would be the explicit calculation of the conserved charges

for the non-topological soliton that we found. It would be interesting to investigate the

energy bound [13, 23] for this soliton. We hope to report on these issues soon.
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A. Analysis of the supersymmetry breaking condition

In this appendix, we give the technical details that lead to (3.4)-(3.9). We note that our

analysis of δψ̃µ = 0 goes along the lines of [13].

By defining Bµ = 1
4ωµ

abγab + mC2γµ, one can write the Killing spinor equation (2.9)

as

Dµε ≡
(

∂µ + Bµ − i

2a2
Qµ

)

ε = 0 . (A.1)

Now imposing [Dµ,Dν ]ε = 0, it can be shown that this integrability condition is equivalent

to

(Sσ
cγ

c + Gσ)ε = 0 , (A.2)

where we have defined

Sσ
c ≡ εµνσ(∂µBνc + εabcBµ

aBν
b) and Gσ ≡ − i

2a2
εµνσ∂µQν

for simplicity. For a 1/2 supersymmetric solution, we now assume a projection of the form

(1 − γaba)ε = 0 , (A.3)

where ba’s are some complex functions that satisfy baba = 1. This condition can easily be

solved with a spinor of the form

ε = N(1 + γaba)ε0 , (A.4)

where N is an arbitrary complex function and ε0 is a constant spinor. Inserting this solution

for the spinor into the integrability condition (A.2), one finds

Sσ
c + εabcS

σabb − Sσ
ab

abc = 0 . (A.5)

– 14 –



J
H
E
P
0
8
(
2
0
0
6
)
0
7
8

One now calculates the components of Sσa and Bµ
a using the ansatz (3.1) for the

metric and substitutes these to the condition (A.5) which yields

Bt2

Bθ2
=

Bt0

Bθ0
= Λ(r) for some function Λ(r) ,

St2(b1 − b2b0) − St0(1 + (b0)
2) = 0 , (A.6)

Sθ2(b1 − b2b0) − Sθ0(1 + (b0)
2) = 0 .

On the other hand, going back to the original Killing spinor equation (A.1) and using (A.4)

leads to

∂µ(ln N) − i

2a2
Qµ + Bµcb

c = 0 , (A.7)

∂µba + Bµa − Bµcb
cba − εabcb

bBµ
c = 0 . (A.8)

However, (A.6) together with the µ = t and µ = θ components of (A.8) imply that

(∂t − Λ(r)∂θ)ba = 0 . (A.9)

Now taking the r derivative of (A.9) and using the information inherent in the µ = r

component of (A.8) implies that ∂θba = 0, and thus ∂τba = 0, unless Λ′(r) = 0. In what

follows we assume that ba = ba(r) only and keep Λ(r) arbitrary so that one is led to

b0 = b2Z ±
√

Z2 − 1 , b1 = −Z ∓ b2

√

Z2 − 1 ,

where

Z(r) ≡ Bθ2

Bθ0
= −1

2

H2G′

FH ′ + 2mC2 H

H ′ (A.10)

for our choice of metric functions (3.1). Using these with the µ = r component of (A.8),

one also finds that

b′2 = ±Br1(r)(1 − (b2)
2)

√

Z2 − 1 and b′1 = Br1(r)((b1)
2 − 1) ,

which lead to

Z ′ + 2Br1(r)(Z
2 − 1) = 0 . (A.11)

Now using the explicit components of Bµa in (A.6), one also obtains

Br1(r) =
F ′

2FZ
, (A.12)

which finally yields (3.10) thanks to (A.11).

For the metric ansatz employed, the explicit form of Br1(r) is

Br1(r) =
1

4
G′H

F
+ mC2 .

Using this in conjunction with (A.12) and (A.10) leads to (3.4) and (3.5), together with

Λ(r) = g0 + 4mC2 F

H ′ where g0 is an integration constant,
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after a careful scrutiny. All of these can be used in the µ = r component of (A.8) to obtain

the complex functions ba as

b2 =
β

(

2
F (−ik +

√
F 2 − k2)

)p
− 1

β
(

2
F (−ik +

√
F 2 − k2)

)p
+ 1

,

b0 = ±i
k

F
+

p

F
b2

√

F 2 − k2 , where p2 = 1 , (A.13)

b1 = − p

F

√

F 2 − k2 ∓ i
k

F
b2 ,

for some integration constant β.

Going back to (A.7), one can now determine the function N in (A.4) as

ln N =
1

2
ln F ± ip

k

2
I(F (r)) + ñ(θ, t) ,

where ñ(θ, t) is an arbitrary function to be determined and

I(F (r)) =































1
2k

{

2 arctan
[

4βk
(4β2−1)F

]

+ i
(

ln
[

F 2

(1−4β2)2F 2+16β2k2

]

−2 ln
[

2(4β2−1)[4βF+ik+
√

F 2−k2+4β2(−ik+
√

F 2−k2)]
(1+4β2)2((4β2−1)F+4iβk)

])}

, p = +1

1
2k

{

2 arctan
[

4βk
(β2−4)F

]

− i
(

ln
[

F 2

(β2−4)2F 2+16β2k2

]

+2 ln
[

2(β2−4)[−4βF+β2(−ik+
√

F 2−k2)+4(ik+
√

F 2−k2)]
(β2+4)2((β2−4)F−4iβk)

])}

, p = −1

. (A.14)

However, using the µ = t and µ = θ components of (A.7), one can show that ñ(θ, t)

necessarily has the form ñ(θ, t) = i(c1θ + c2t) for some constants c1 and c2.

All of the steps taken so far has been verified to be consistent in themselves. Putting

things together, the Killing spinor is finally obtained as

ε =
√

F (r)ei(c1θ+c2t)eipqkI(F (r))/2(1 + γaba)ε0 , (A.15)

where ba’s and the function I(F (r)) are given in (A.13) and (A.14), respectively. Further-

more, the constants c2 and c1 can also be used in finding the components of the vector

field Aµ (3.3), which yield (3.6) and (3.7), respectively.

One is now left with the other supersymmetry transformation δλ̃ = 0 (2.10). It can

easily be verified that this can be written in the form

(Ξaγa + Ξ)ε = 0 ,

where

Ξ0 =
i

F
((λ − εψ) − G(n − εχ)) , Ξ1 =

R′

R
, Ξ2 =

i

H
(n − εχ) and Ξ = 4εma2C .

However, one easily finds that the projection condition used for the Killing spinor (A.3)

implies that Ξaba + Ξ = 0 as well. Using baba = 1 and the standard γa algebra, one also

finds that Ξa are related by

Ξba + Ξa + εabcΞ
bbc = 0 .
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A careful study of these equations finally shows that there are in fact only two condi-

tions that are imposed by (2.10) on the metric and matter field components, which are

simply (3.8) and (3.9).

This concludes our analysis for the simultaneous vanishing of the supersymmetry trans-

formations (2.9) and (2.10) for our ansatz (3.1), (3.2) and (3.3), and the derivation of the

equations (3.4) through (3.9).
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